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In this work, we investigate the suitability of models based solely on continuum 
hydrodynamics for Stokesian Dynamics simulations of sheared suspensions of non- 
Brownian hard spheres. The suspensions of interest consist of monolayers of uniform 
rigid spheres subjected to a linear shear field. Areal fractions ranged from = 0.2 to 
0.6. For these suspensions, two sets of Stokesian Dynamics simulations were 
performed. For the first set, particle interactions were assumed to be strictly 
hydrodynamic in nature. These simulations are analogous to those of Brady & Bossis 
(1985) and Chang & Powell (1993). For the second set of simulations, particles were 
subjected to both hydrodynamic and short-range repulsive forces. The repulsion serves 
as a qualitative model of non-hydrodynamic effects important when particle separation 
distances are small. Results from both sets of simulations were found to be within the 
range of established experimental data for viscosities of suspensions. However, 
simulations employing the pure hydrodynamic model lead to very small separation 
distances between particles. These small separations give rise to particle overlaps that 
could not be eliminated by time-step refinement. The instantaneous number of 
overlaps increased with density and typically exceeded the number of particles at the 
highest densities considered. More critically, for very dense suspensions the simulations 
failed to approach a long-time asymptotic state. For simulations employing a short- 
range repulsive force, these problems were eliminated. The repulsion had the effect of 
preventing extremely small separations, thereby eliminating particle overlaps. At high 
concentrations, viscosities computed using the two methods are significantly different. 
This suggests that the dynamics of particles near contact have a significant impact on 
bulk properties. Furthermore, the results suggest that a critical aspect of the physics 
important at small particle separation distances is missing from the pure hydrodynamic 
model, making it unusable for computing microstructures of dense suspensions. In 
contrast, simulations employing a short-range repulsive force appear to produce more 
realistic microstructures, and can be performed even at very high densities. 

1. Introduction 
Dynamic simulation is a powerful tool for studying the microscopic and macroscopic 

behaviour of granular media such as suspensions, pure fluids, sand, etc. At the 
microscopic level, dynamic simulation entails application of Newton’s second law of 
motion to the individual particles in the substance. From time integration of these 
equations, microscopic particle configurations, or the microstructure, are obtained. 
Macroscopic properties can then be computed from the known microstructure. For 
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FIGURE 1. Comparison of relative viscosities ?j obtained from Stokesian Dynamics simulations to 
experimental data. Simulations of Brady & Bossis (1985) (0) and Chang & Powell (1993) (n) are 
of monolayer suspensions of non-Brownian monodisperse hard spheres subject to a linear shear flow. 
Data of Chang & Powell (1993) are shown with errorbars if errorbars were used in their original 
presentation. Experimental data of Lewis & Nielsen (1968) (+) are for glass spheres of four different 
mean diameters: 7, 34, 51 and 95 pm. Experimental data of Sengen & Probstein (1989) (A) are for 
styrene spheres with diameters in the range 20G300 pm. Experimental data presented in Thomas 
(1965) (+) are from a number of different published sources. A limited number of these data, 
illustrating the variability of measured viscosities of dense suspensions, are shown. For the 
simulations, q5 = q5, and q5m = x/4. For the experimental data, C$ = q50 and q5m = n/(3 2/ 3). 

suspensions of colloidal particles, a dynamic simulation method known as Stokesian 
Dynamics has been developed (see Bossis & Brady 1984; Durlofsky, Brady & Bossis 
1987; and Brady et al. 1988). Stokesian Dynamics can be used for applications in which 
particle motion is governed by hydrodynamic, interparticle, Brownian, and external 
forces. In addition, because multi-body hydrodynamic interactions and the effects of 
lubrication layers between nearly touching particles are included in its formulation, this 
method is not restricted to dilute systems. As a result, Stokesian Dynamics can be used 
for investigating phenomena important in very dense suspensions. 

Stokesian Dynamics has seen extensive use in investigations of suspension rheology 
(see e.g. Brady & Bossis 1985, 1988; Bossis & Brady 1989; Durlofsky & Brady 1989; 
Bonnecaze & Brady 1992; Chang & Powell 1993; Phung & Brady 1991). Brady & 
Bossis (1985) and Chang & Powell (1993) employed Stokesian Dynamics to study the 
high-shear limiting rheology of suspensions of hard spheres, i.e. dispersions of rigid 
spheres in which the only forces governing particle motion are hydrodynamic in origin. 
Relative viscosities obtained by these investigators are shown in figure 1, where they 
are compared to the experimentally measured viscosities of Lewis & Nielsen (1968) and 
Sengen & Probstein (1989). In addition, a limited number of measured viscosities 
presented in Thomas (1965) are shown: these viscosities, which were obtained from a 
number of different published sources, exhibit a high degree of variability. Here we 
show a limited number of these data points to illustrate this variability. To facilitate 
comparison of the simulated viscosities, which are for monolayer suspensions, to the 
experimental data, the simulated and experimentally measured viscosities are plotted 
as functions of and q5Jq5m respectively. Here (6, is areal fraction, $w is volume 
fraction, and (6m is taken as the maximum areal or volume fraction at which 
suspensions can flow homogeneously. Following Brady & Bossis (1985), we have set 
q5, = n/4 for the simulated viscosities and (6, = n/(3 1/ 3) for the experimental data. 
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The simulated viscosities arc ceen to agree quite well with the experimental data of 
Lewis & Nielwn (1968) for all densities shown In contrast, for 4, 2 0 50 the simulated 
viscosities arc cignificantly I,+rgei than the measured viscosities of Sengen & Probstein 
(1989) However. the I.hoirin~ (1965) data indicate a high degree of variability in 
measured viw~uties at hip11 densities Therefore, given that both sets of simulation 
results. as well as the data of  1 e ~ i s  & Nielsen (1968) and Sengen & Probstein (1989), 
fall within the bounds suggestcti I)! the Thomas ( 1965) data, the comparison between 
the simulation< and the expet imental data seems reasonable 

i t ies obtained h? Rradj & Bossis (1985) and Chang & 
Powell (1991). there is a f'iind<inic.ntal inconsistency with the use of Stokesian Dynamics 
to simulate su\pensicm of ricm Brownian hard spheres that has not been addressed in 
the cited work Thi\ inconsisteii('p IS the use of a pure hydrodynamic and continuum- 
mechanics-based model ( I  r Stokesnan Dynamics) to simulate suspensions for which 
extremely small particle \rp,it ,itions occur Hos\is & Brady (1984) noted that 
dimensionle\\ curface- to  surt,ic.r particle separationc of O( 10 $) routinely occur in 
simulations ( i t  dense hard-sp1irv-e cuspensions Fox the O( 100 pm) particles used in the 
experiments ( I t  I,ewrs & Nielvn I 1968) and Sengen & Probstein (l989), a dimensionless 
separation ot 10 * i q  equi\~;llent to a dirnensinnnl separation of 0(10-12 m). Non- 
hydrodynainic force\, sairt'ac~ i oughness effect\, and non-continuum phenomena are 
expected to he important at t h w  small separations (BOSSIS & Brady 1984), but have 
not been incorporated in pi?\ ioiis investigations that employed Stokesian Dynamics. 
Moreover. thr cnnsequencc~ of  armitting these pl-mornena have not been investigated 
to date 

F rnm a computational mndpoint. the presence of extremely small particle 
separations necessitates the use of a very small time step when calculating particle 
trajectories In the ahsence ot  n sufficiently small time step. Bossis & Brady (1984) 
noted that numerical error\ cdn cause particles to overlap However, they also noted 
that overlaps could he elrmiti;ited. at great tyense.  by reducing the time step. 
Although particle overlaps re typically quite iniall, they are problematic since 
hydrodynamic forces asso led with overlapping particles are undefined. To 
circumvent this problem, R I \  Rr Rrady (198.11 developed the following method to 
accommodate the presenw i Ii overlapping particles. When pairs of particles 
overlapped. hydrodynamic foi ccc were cornputetl <*s i f  the overlapping particles were 
actually sepirated h, a small gap As a result. particles could overlap without causing 
termination of the calculation Thi\ technique m c i \  employed in the simulations of 
Brady & Bo$sis (1985) and f 'hang & Po-ell (1991) However, a detailed study of the 
influence ot particle overlaps which can be quite numerous at high densities, on 
computed suspension microstrirctures and bulk properties has not been performed. 

In the current work, we present a detailed study of the problems that arise when 
using Stokesian Dynamic< t o  simulate sheared suspensions of hydrodynamically 
interacting \pherical particle<. I e. suspensions of non-Brownian hard spheres. The 
simulations discussed are analogous to those of Hrady & Bossis (1985) and Chang & 
Powell (1991) As u e  will show, a number of problems arise with these types of 
simulations particularly at high densities. In agreement with Bossis & Brady (1984), 
our results indicate the presence of very small particle separations in the computed 
microstructure that give rise l o  overlaps between adjacent particles. These overlaps 
could not be eliminated by reducing the time step F'rrrthermore, the number of particle 
overlaps tended to be large ,it high densities For Q,, = 0 60. we observed in excess of 
40 overlaps in instantaneous configurations containing 25 particles. Clearly, one must 
be m a r y  of result< in which the number of overlaps far exceeds the number of particles. 

Despite the reasnnablr \ I  
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These results merit reporting because they were obtained from simulations essentially 
identical to those discussed in Brady & Bossis (1985) and Chang & Powell (1993). An 
additional problem at high densities is that simulations do not approach an asymptotic 
state at long times, and therefore do not exhibit the behaviour expected of real 
suspensions. Instead, simulations terminate prematurely due to the presence of large 
overlaps between adjacent particles in the suspension. This anomalous behaviour could 
not be eliminated with time-step reductions. Based on the results reported here, we 
conclude that the purely hydrodynamic model is not satisfactory at high densities. 

We also present results of Stokesian Dynamics simulations in which particles 
interact through hydrodynamic and short-range repulsive forces. This repulsion serves 
a number of purposes. First, the repulsion prevents the occurrence of extremely small 
particle separations, with the minimum particle separation in the suspension fixed by 
the range of the interparticle force. Secondly, although not based on a rigorous model 
of phenomena important at very small length scales, the repulsion can be thought of 
as a qualitative representation of forces, such as those due to molecular interactions, 
that might be important when particles are near contact. Finally, for all densities 
considered in this work, repulsion eliminated all particle overlaps. 

We will show that simulations employing a short-range repulsive force have a 
number of desirable features not seen in simulations based on a purely hydrodynamic 
model of particle interactions. First, simulations reach an asymptotic state quite 
quickly, with bulk properties exhibiting well-defined long-time averages. In the absence 
of repulsion, long-time averages tend to vary to a much greater degree. In addition, 
computed microstructures appear to be more realistic and do not contain overlaps. As 
a result, simulations do not terminate due to excessive overlap as is observed in 
simulations based on a pure hydrodynamic model. Finally, computed viscosities are 
found to be in reasonable agreement with experimental data. 

2. Simulation method 
We consider a suspension of rigid spherical particles of uniform size dispersed in a 

Newtonian liquid. The suspension is assumed infinite in extent and subject to an 
imposed velocity field given by 

u" = ( ' jY,O,O),  (1) 

where the vector urn denotes the bulk velocity of the suspension, is the shear rate of 
the imposed flow, and y denotes distance in the shear gradient direction. To reduce the 
computational cost of the simulations, we follow Brady & Bossis (1985) and Chang & 
Powell (1993) and restrict particles to the (x, y)-plane, the plane of shear. The 
suspension geometry and the coordinate system are shown in figure 2. Particles in 
suspension are assumed sufficiently small that the particle Reynolds number may be 
taken as zero, and sufficiently large that Brownian motion may be neglected. 
Therefore, the motion of the suspended particles can be assumed to be governed by a 
balance of hydrodynamic and interparticle forces. 

For the conditions described above, Stokesian Dynamics can be used to compute the 
transient behaviour of the suspension microstructure and the bulk viscosity. This 
method is outlined in detail in Brady et al. (1988). Here we simply give an overview of 
the method. To facilitate simulations of infinite monolayer suspensions, we consider a 
finite system of N particles that is periodically replicated throughout the (x,y)-plane. 
Prior to shearing, this N-particle system resides in a square computational domain of 
dimensions heell x heell. Assuming a known configuration of particles, Durlofsky et al. 
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FIGURE 2. Schematic representation of computational domain, which contains N particles that all lie 
in the (x,  y)-plane. Prior to shear the domain is square with dimensions h,,,, x h,,,,. The suspension 
is subjected to an imposed shear flow given by uz = (Yy, 0,O). 

(1987) have shown that the translational and rotational velocities of the particles can 
be related to the hydrodynamic forces, torques, and stresslets exerted on the suspended 
particles through the relations 

In (2), the vector F, contains the forces and torques exerted on the N suspended 
particles by the fluid ; S, contains the three non-zero independent components of the 
hydrodynamic stresslet, S,,,, Shyy7 and Shzyr exerted on each of the N particles; U 
contains the translational and rotational velocities of the N suspended particles; Urn 
contains the translational and rotational components of the bulk velocity that would 
exist at the particle centres in the absence of the particles; and E" contains the e,,, eyy, 
and ezy components of the bulk rate-of-strain tensor that would exist at the particle 
centres in the absence of the particles. For the bulk velocity field described by (I), the 
rate-of-strain tensor is constant with components ezz = eyy  = 0 and ezy = +. The 
quantities R,,, R,,, R,,, and R,, are configuration-dependent resistance tensors. 
For the monolayer suspensions of interest in this work, forces and translational 
velocities associated with each particle are restricted to the (x, y)-plane while torques 
and rotational velocities associated with each particle are restricted to the z-direction. 
As a result, the vectors in equation (2) have dimension 3N and the tensors have 
dimension 3N x 3N. In (2)  and for the remainder of this paper, displacements are non- 
dimensionalized by the sphere radius a, translational velocities by ?a, rotational 
velocities by y ,  time by l / j ,  viscosity by the solvent viscosity q S ,  strain rates by ?, forces 
by 6nvS a2y,  and torques and stresslets by 67~77~~ a3y. 

Equation (2) is derived from an integral solution of Stokes equations, written in a 
form that is convergent in the limit N +  co. Combining this integral solution with 
Faxen expressions for spherical particles and a multipole moment expansion 
(Durlofsky et al. 1987) leads to expressions relating the translational and rotational 
velocities of the N particles to moments of the hydrodynamic force density exerted on 
the N particles. These equations can be expressed in the form 
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where Mu,, MUs, MEF, and ME, are configuration-dependent mobility tensors. 
Equation ( 3 )  incorporates far-field hydrodynamic interactions between particles, 
including interactions involving particles that reside in image domains. These 
interactions can be efficiently incorporated into the mobility tensors using an Ewald 
sum. Using the Ewald sum, the strength of hydrodynamic interactions decays rapidly 
with increasing distance between the computational domain and image domains. 
Therefore, only image domains relatively close to the computational domain need be 
explicitly included in the formulation of (3) .  In this work, image domains are included 
if they abut the computational domain, or if they abut image domains that abut the 
computational domain. To maintain positive-definite mobility tensors, the monolayer 
must also be periodically replicated in the z-direction. These periodic images are 
located at z = +zcClz and z = +2zCet1, with zCeEI heeEz to minimize the influence of 
these images on particles in the computational domain. The computational domain is 
located at z = 0. Tests were conducted to ensure that variations in zcezz and variations 
in the number of image domains employed in the formulation of (3)  did not 
significantly influence simulation results. Equation ( 3 )  contains only far-field 
hydrodynamic interactions. To include near-field interactions, ( 3 )  is inverted to yield 
an expression of the form of (2). Near-field hydrodynamic interactions are then 
included in a pairwise additive manner. 

Particle velocities are computed from a force and torque balance on the suspended 
particles. Applying Newton's second law to the particles, and neglecting inertia due to 
the small size of the particles, leads to 

Fh + Fp = 0, (4) 
where Fh is as defined above and Fp is a vector of dimension 3N containing the two 
components of force and the one component of torque exerted on each of the 
suspended particles by interparticle forces. Because the particles are spherical, non- 
hydrodynamically induced torques, and therefore hydrodynamically induced torques, 
are identically zero. Combining equations (2) and (4) leads to 

R,,.(U-U") = Fp+RFE:E"O, ( 5 )  
which is a 3N x 3N system of linear algebraic equations. For a known configuration of 
particles, equation ( 5 )  can be solved for the unknown velocities U. Therefore, given a 
known initial configuration of particles, the temporal variation of particle positions 
and velocities can be obtained through solution of (5 )  and numerical integration of U. 
For this work, a fourth-order Adams-Bashforth scheme (Conte & de Boor 1980) is 
used for the numerical integration. Equation (5)  is solved directly using a Cholesky 
decomposition. To reduce the computational costs associated with computing R,, and 
RFE, the mobility tensors MU,, etc., which contain only far-field hydrodynamic 
interactions and therefore vary slowly with time, are recomputed at time intervals of 
Ti,, instead of at every time step. 

With the suspension microstructure and velocities known, the bulk stress or viscosity 
can be obtained. The bulk stress in a suspension is defined as the average stress in a 
volume that is both much larger than the characteristic particle spacing and much 
smaller than the macroscopic length scale of the suspension (Batchelor 1970). 
Employing this definition, one can write an expression for the suspension viscosity that 
takes the form 

1 N a-1 

(6) 
l N  l N  

7 = 1 + 3$u-  c @& + 3 $ , -  c !cy+3A- 2 c fgzcyp-Y,) 
N,=l Na=l N,=l/9=1 
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FIGURE 3. Schematic of particle configurations used to compute hydrodynamic forces associated with 
overlapping particles: (a)  two overlapping particles, with the overlap magnified for clarity; (b) the 
configuration used to compute the hydrodynamic forces associated with the overlapped particles. The 
particles are not actually moved. 

(see Bonnecaze & Brady 1992), where $a is the suspension areal fraction, Fix is the x- 
component of the interparticle force exerted on particle a by particle P,yD-y, is the 
distance in the shear-gradient direction from the centre of particle a to the centre of 
particle j3, and O;,+ Y;v = Sixg where S;ry is the (x, y)-component of the 
hydrodynamic stresslet exerted on particle CL by the fluid. The quantity O;, is the 
component of S;L, that arises from the bulk motion while !Pi, is the component of S& 
that arises from interparticle forces. In vector form, O+ Y = S,, with 0 and Y 
obtained from 

0 = (RsE - Rhyrr R,: RFb;) E" (7) 

and Y = - R,, R,: F,. (8) 

In this work, the first sum in equation (6) will be referred to as the hydrodynamic 
viscosity 'I,, while the combination of the second and third sums in (6) will be referred 
to as the viscosity due to interparticle forces ~ 1 ~ .  

Time averages of v ,  denoted by 7, are computed in the time interval T, d t d T,, 
where T,  is the final time of the simulation and T, is the equilibration time of 7.  In this 
work, we conservatively estimate the equilibration time to be the time at which the 
running average of 7 ceases to vary significantly. Statistical errors in y~ are determined 
using the sub-average method outlined in Allen & Tildesley (1987). 

3. Simulation of suspensions of hard spheres 
To simulate suspensions in which particles are subjected only to hydrodynamic 

forces, one can set Fp = 0 and perform simulations as outlined in 52. However, in the 
absence of repulsive interparticle forces, particle separations can become quite small. 
Bossis & Brady (1984) noted that these small separations, in combination with 
numerical errors associated with the integration of U, can lead to overlapping particles. 
Although they found these overlaps to be quite small, they are problematic since 
lubrication forces between closely separated particles are singular at contact and 
undefined for the unphysical situation of overlapping particles. To avoid these 
problems, Bossis & Brady (1984) employed the following procedure for computing 
hydrodynamic forces associated with overlapping pairs of particles. For pairs of 
particles with centre-to-centre separations less than 2 + t ,  where 0 < 6 4 1, which 
includes all overlapping pairs as well as pairs separated by a gap smaller than e, the 
centre-to-centre separation was assumed to be 2 + c  for the purpose of computing 
hydrodynamic forces. However, the particles were not actually moved. With the above 
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procedure, the singularity associated with touching particles and the ambiguity 
associated with computing hydrodynamic forces for overlapping pairs of particles are 
avoided. A schematic representation of the two-particle configurations used in place of 
overlapping two-particle configurations is shown in figure 3. 

As will be shown in $4, a number of problems arise when performing simulations 
using the above approach, including the occurrence of extremely small particle 
separations that invalidate the continuum hydrodynamic model used for the 
simulations, and the presence of large numbers of overlapping particles in computed 
configurations. Therefore, we have investigated an alternative approach in which 
extremely small particle separations and overlaps are prevented by allowing particles 
to be repulsive at very small separations. The repulsive force has the effect of setting 
a minimum spacing in the suspension, which can eliminate problems associated with 
extremely small particle separations. Similar methods have been used in Brownian 
Dynamics simulations of hard-sphere suspensions (Heyes & Melrose 1993). In our 
work, the repulsive force is taken as 

where F;P is the force on particle a exerted by particle p, rsep is the centre-to-centre 
separation vector directed from particle to particle a, T controls the decay rate of F;,, 
and 12 = I rSep 1 - 2. The parameter y* is equal to (6x7, a2j)/(2F,,), where TF,, is the 
dimensional magnitude of Fib at contact. Equation (9) has the same form as the 
Derjaguin formula for the repulsive force between two like-charged spheres with 
constant surface potentials (Russel, Saville & Schowalter 1989). However, we have 
demonstrated in tests that the precise form of F$ is unimportant provided it decays 
rapidly to zero with increasing particle separation. 

4. Results 
In this section, results of Stokesian Dynamics simulations of suspensions of non- 

Brownian hard spheres are presented. For the results presented in $4.1, Fp = 0 so 
particle overlaps do occur. Hydrodynamic forces associated with these overlapping 
particles are computed using the method outlined in Bossis & Brady (1984) (see $3) .  
For the results presented in $4.2, particles are repulsive with Fp given by equation (9). 
For these simulations, particles never overlapped. 

= 0.20 to 0.60. For 
most of the simulations N = 25, but a limited number was also performed with N = 36, 
49 and 64. However, as results did not change significantly with N ,  results are presented 
for the N = 25 simulations only. We note that N = 25 is the number of particles 
employed in the simulations of Brady & Bossis (1985) and the # a  = 0.60 monodisperse 
simulations of Chang & Powell (1993). Initial configurations consisted of particles 
randomly positioned in the computational domain. Except as noted below, all 
simulations were run for 500 dimensionless time units (T, = 500). However, as a 
precaution against reporting results for which the extent of overlap between adjacent 
particles is quite large, simulations were stopped whenever the amount of overlap 
between two particles exceeded 2 % of a particle radius. Although arbitrary, 2 YO is in 
accord with the amount of overlap reported by Bossis & Brady (1984) for their 
simulations of moderately dense suspensions. Simulations for Fp = 0 and y5a = 0.60 
tended to terminate prior to T, = 500 due to the presence of overlaps in excess of 2 %. 

For the simulations presented, areal fractions ranged from 
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FIGURE 4. The number of particle overlaps in instantaneous particle configurations as a function of 
time. $a = 0.50, F, = 0, T? = 500, N = 25. (a )  At = 5.0 x (b) Ar = 2.5 x (c) At = 1.25 x 
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In addition, computational costs limited F, =!= 0 simulations for which $a = 0.60 to 
T, = 250. For the simulations with Fp = 0, t' = lo-' except where noted. The required 
time step At  was a function of $a and 7 and ranged from At = to 2.5 x for 
simulations of non-repulsive particles, and from A t  = 5 x lop4 to 1.5625 x for 
simulations of repulsive particles. Other numerical parameters employed in the 
simulations were: Ti,, = 0.1 and zcelz = 100hC,,,. Tests were performed to ensure that 
results did not change significantly when different numerical parameters or initial 
configurations were employed. 

4.1. Simulation of non-repulsive particles: Fp = 0 
Results presented in this subsection are for non-repulsive particles, i.e. F p  = 0. For 
these types of simulations, particle overlaps occurred for the entire range of areal 
fractions considered. To illustrate their prevalence, the number of particle overlaps is 
shown as a function of time for $a = 0.50 in figure 4(a). Although quite oscillatory, the 
number of overlaps tends to increase with time, exceeding ten for most of the 
simulation and exceeding 20 for a significant fraction of time as well. Since 12 overlaps 
can involve up to 24 particles, 10-20 overlaps in a configuration containing 25 particles 
is certainly non-trivial. 

The simulation discussed above, for which At = 5.0 x lop4, was rerun with time steps 
of A t  = 2.5 x lo-* and 1.25 x to determine if the number of overlaps could be 
reduced by reducing the time step. The number of overlaps as a function of time for 
these simulations is shown in figures 4(b) and 4(c). There is only a slight reduction in 
the number of overlaps, on average, for the simulations employing smaller time steps. 
This suggests that particle overlaps cannot be eliminated for reasonable values of At. 
Reductions in other parameters that influence the temporal accuracy of the simulations, 
such as Ti,,, also had little effect on the number of overlaps. In addition, similar results 
were obtained using different initial configurations, and for simulations employing 36, 
49 and 64 particles. The number of overlaps did increase with increasing N,  but 
remained nearly constant on a per-particle basis. For all values of N ,  configurations 
contained on average about one overlap for every two particles. In general, we also 
found that overlaps became more common with increasing $a,  with usually no more 
than one overlap per 25-particle configuration at $u = 0.20 and up to 40 overlaps per 
25-particle configuration at $u = 0.60. In addition, for the entire range of areal 
fractions considered, overlaps could not be eliminated by reducing the time step. 

In order to better understand why time-step refinement does not significantly reduce 
the number of overlaps, it is useful to examine the temporal variation of the surface- 
to-surface separation h of two nearly touching particles in the At = 5.0 x lo-* 
simulation discussed above. For this purpose, we consider two particles that overlapped 
in the time interval 6 < t < 7. With the particle configuration at t = 4 as an initial 
condition, the At  = 5.0 x lop4 simulation was rerun for 3 time units using various 
values of At  and 6 in order to observe the influence of these parameters on h. The time 
variation of h for these various parameter values, plotted at intervals of At, is shown 
in figure 5 for the time interval 2 < t ,< 3 ,  which corresponds to the time interval 
6 ,< t d 7 in the original simulation. In the initial configuration, h = 2.4 x lop3. 

and t' = lo-', the same values used in 
the original simulation, is shown in figure 5(a). When h reaches a value of 
approximately lo-' it decreases rapidly, with the particles overlapping at t z 2.3. When 
the particles overlap, h < 0 and cannot be plotted on a logarithmic scale and so are 
omitted from the curves shown in figure 5. The rapid decrease in h seen in figure 5(a) 
is due to the method used to compute hydrodynamic forces that is described in $ 3 .  

The temporal variation of h for At = 5 x 
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FIGURE 5.  Temporal variation of surface-to-surface separation h between two nearly touching 
particles for various At and E. For obvious reasons, negative values of h were omitted from the plots, 
and h is plotted only up to the point at which significant oscillations or overlaps occur. $a = 0.50, 
F, = 0, N = 25. (a) E = lo-', At = 5.0 x (b)  E = lo-", At = 5.0 x (c) e = lo-", 
At = 1.25 x (f) 8 = 10-14, 
At = 3.90625 x 

( d )  E = 10-l2, At = 3.125 x (e)  E = Az = 7.8125 x 

Since these forces are computed assuming h = max(h, e) ,  lubrication forces are weaker 
than is physically realistic when h < e and are insufficient to keep the particles 
separated. As a result, the particle separation decreases rapidly when h < e, resulting 
in overlap. The 'kinks' observed in figure 5 are due to the periodic updating of the 
mobility tensors, which was performed at time intervals of Ti,, = 0.1. 

is shown. For 
these parameter values, hydrodynamic forces are correctly computed for h 2 10-l'. 
This eliminates the rapid decrease in h observed in figure 5(a). However, h now 
becomes oscillatory at t zz 2.3 where h zz 7 x lo-'. These oscillations cause the particles 

In figure 5(6) ,  the time variation of h for At = 5 x lop4 and e = 
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to overlap. As observed in figures 5(c) and 5(d) ,  for which At = 1.25 x and 
3.125 x for both figures, the onset of the oscillations 
is delayed by reducing the time step. Additional time-step reductions cause further 
delays in the onset of the oscillations, as observed in figures 5 (e) and 5 (f), for which 
At = 7.8125 x for both figures. 
Although it appears that overlaps have been entirely eliminated for 
At = 3.90625 x the particles did overlap very briefly at t NN 2.9. In addition, since 
the particle separation is decreasing with time at t = 3, overlaps are likely to occur for 
t > 3. This supports our original contention that overlaps cannot be eliminated for 
reasonable values of At. In all cases for which large oscillations in h occurred, these 
oscillations led to particle overlap. 

We note that the condition number of R,,, con(R,,), scales as approximately 
l/hmin where hmin is the minimum particle separation in a configuration. For the small 
values of h shown in figure 5,  R,, can be quite ill-conditioned so it is important to 
determine the effect of this ill-conditioning on computed results. Assuming particle 
positions, and therefore RFU, RFE, Fp, and U" are accurately known, the error 
associated with solving equation (5) for U is bounded by con(R,,) 1 1  R ( 1  / 1 )  B 1 1 .  Here 
R is the residual of equation ( 5 ) ,  B is the right-hand side of ( 9 ,  and I/ I/ denotes a vector 
norm. Therefore, since the position vector X is obtained from time integration of U, 
the error in Xdirectly attributable to error in Uis bounded by At con(R,,) /I R [I / /I B 1 1 .  
For the results shown in figure 5(f), At = 3.90625 x the maximum value of 
con(R,.) is O( 1014), and I /  R /I / / /  B / /  is assumed to be about 10-l6 since double-precision 
(64 bit) arithmetic was used in all of our computations. Therefore the error bound on 
X is approximately lo-*, which is considerably larger than the smallest value of h in 
figure 5 (f). 

To determine if the ill-conditioning of R,, adversely influenced the results shown in 
figure 5, the simulations used to generate the data shown in this figure were rerun using 
128-bit arithmetic. With this increased precision, I/ R 1 1  / / /  B 11 % lop3' and the error 
bound on X is about which is considerably smaller than the smallest value of h 
in figure 5. However, results obtained using the increased precision are virtually 
identical to the results shown in figure 5.  Therefore, although R,, is indeed ill- 
conditioned when h is small, this had no qualitative effect on the results shown in 
figure 5. 

We also note that 7 can be ill-conditioned when the minimum particle separation in 
the suspension is small. However, for all of the viscosity results presented in this work, 
minimum particle separations were lo-' when Fp = 0 (recall that a minimum 
separation equal to t: is assumed when Fp = 0) and 0(10-5) when Fp =+ 0. For particle 
separations greater than or equal to these minima, ill-conditioning did not appear to 
be a problem. 

The results shown in figure 5 illustrate two important points. First, the method 
developed by Bossis & Brady (1984) (see $3) to compute hydrodynamic forces 
associated with nearly touching and overlapping particles can actually cause overlaps. 
Secondly, if t: is reduced in order to improve the accuracy of the hydrodynamic force 
computations at small separations, numerical instability becomes a problem due to the 
stiffness of the evolution equations that describe particle trajectories. This instability 
also causes particle overlaps. This suggests that numerical instability and associated 
particle overlaps could be eliminated through the use of an implicit numerical 
integration scheme. To test this hypothesis, a limited number of simulations were 
performed using a variable-time-step predictor-corrector algorithm (fourth-order 
predictor, fifth-order corrector). Although particle overlaps were not observed in these 
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respectively, with t: = 

and 3.90625 x lop6 respectively, with e = 
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FIGURE 6. Running average of the hydrodynamic component of viscosity (fj,Jra as a function 
of time. #a = 0.50, Fp = 0, T, = 500, At = 5.0 x N = 25. 

tests, this approach did lead to particle separations smaller than the resolution of 
double-precision arithmetic (approximately 1 0-l6). Therefore, even if numerical 
stability problems can be eliminated, one still has the problem of resolving extremely 
small particle separations. It is important to note that non-continuum effects and 
physical phenomena not accounted for in the simulations become important at particle 
separations much larger than those achieved here (e.g. for sphere diameters of 100 pm, 
a separation of lo-' is equivalent to 5 x 10-13 m). This suggests that non-hydrodynamic 
forces become important in all suspensions, regardless of particle size, when particles 
are near contact and need to be included in any realistic model of suspension 
mechanics. If these forces are omitted, then extremely small particle separations will 
occur, invalidating the continuum hydrodynamic model and giving rise to related 
problems such as particle overlaps. In addition, since small particle separations are 
expected to become more common with increasing density, the consequences of 
neglecting non-continuum and non-hydrodynamic effects, such as particle overlaps, 
should also become more common with increasing density. Our results are in 
agreement with this view and indicate a dramatic increase in the incidence of particle 
overlaps with increasing density when Fp = 0. 

A number of simulations were also performed using a variable-time-step explicit 
Euler integration method. Although particle overlaps were not observed in these 
simulations, particle separations were quite small, O( lo-''). Furthermore, these 
separations decreased with decreasing time step and showed no tendency to converge 
to non-zero values. This suggests that, in the absence of repulsive interparticle forces, 
the minimum particle separation will tend to zero with time-step refinement. Therefore, 
in agreement with results obtained using the predictor-corrector method, we find that 
even if particle overlaps can be eliminated, one still has the problem of resolving 
extremely small particle separations. At these small separation distances, non- 
continuum and non-hydrodynamic forces will undoubtedly be important. 

An example of the rheological behaviour of a suspension in which particles are 
subjected to hydrodynamic forces only, i.e. where Fp = 0, is shown in figure 6. In this 
figure, the temporal dependence of the running average of vh, denoted here by (TJra,  
is shown for 9, = 0.50. These data are from the At = 5.0 x simulation for which 
particle overlaps are shown in figure 4(a). The running average (Qra displays a strong 
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FIGURE 7. Running average of the hydrodynamic component of viscosity (ijJ,, as a function of time. 
dG = 0.60, F, = 0, N = 25. __ , At = 2.5 x 
..., At = 2.5 x 

---, At = 1.25 x ---, At = 5.0 x 

temporal dependence for t < 200, and a weaker but non-trivial temporal dependence 
for 200 < t < 500. However, for a suspension whose bulk properties are time- 
independent, the long-time or asymptotic value of (7Jra should also be time- 
independent. The continued evolution of even after 500 time units, suggests that 
in the absence of non-hydrodynamic forces, suspensions do not approach an 
asymptotic state. In contrast to the temporal dependence of (TJ,, observed in figure 
6, Brady & Bossis (1985) and Chang & Powell (1993) reported equilibration times of 
20 for essentially identical simulations. 

To further illustrate the rheological behaviour of suspensions simulated using a 
purely hydrodynamic model, the temporal dependence of (?jh)ra for 4, = 0.60 is shown 
in figure 7. Results are shown for four different time steps: At = 2.5 x lo-*, 1.25 x lo-*, 
5.0 x and 2.5 x For all four At,  exhibits a strong initial transient that 
dissipates prior to t = 10. Beyond this point, appears to plateau. However, for 
At = 2.5 x the simulation terminated at t z 96 due to the presence of overlaps in 
excess of 2 %  of a particle radius. The more temporally resolved simulations also 
terminated due to the presence of overlaps in excess of 2%, except for the 
At = 1.25 x lop4 simulation which was run for 500 time units. However, for this case, 
( v ~ ) , ~  is shown only for t 5 79 because the viscosity attained an enormous and likely 
unphysical value (?lh = O(6000)) at t = 78.8. Interestingly, the more-resolved simu- 
lations did not always run longer before terminating (see e.g. the curves corresponding 
to At = 2.5 x lop4 and 5.0 x in figure 7). We also note that for all four simulations, 
the number of overlaps exceeded 40 at the final time point plotted in figure 7. At higher 
densities termination occurred at smaller times, with simulations for $a = 0.70 
stopping in less than 40 time units, even with times steps as low as 5.0 x In 
contrast, this anomalous behaviour was not reported by Chang & Powell (1993), who 
performed simulations analogous to those discussed here. However, as their $a = 0.60 
simulations were run for only 40 time units, it is possible they would have observed 
similar behaviour in longer simulations. These results are additional evidence that 
Stokesian Dynamics simulations based on a purely hydrodynamic model of particle 
interactions do not approach an asymptotic state at long times, and therefore do not 
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FIGURE 8. Comparison of relative viscosities 7 obtained from Stokesian Dynamics simulations ( x ) 
to the viscosity data shown in figure 1. For the current work: F, = 0, N = 25, and error bars are 
omitted when smaller than the symbol. 

exhibit the behaviour expected of real suspensions. Instead it appears that the 
suspended particles become more densely packed with time, and that this eventually 
leads to particle overlaps that grow without bound. 

It has been suggested (J. F. Brady 1995, personal communication) that the observed 
increase in viscosity with time may be a manifestation of a singularity in the pure 
hydrodynamic limit. To answer this question definitively, in the absence of an 
analytical proof, one would wish to observe the variation of viscosity with time under 
conditions such that overlaps were prevented through a sufficiently (perhaps 
prohibitively) small time step, and the cell size was increased so that N - t  co. Even if 
this were computationally possibly, one would not expect the results to mimic real 
particles since deviations from sphericity and surface forces will surely become 
important as particle separations approach zero. 

Time-averaged viscosities ?for 0.20 6 q5u < 0.60 are shown in figure 8 where they are 
compared to the viscosity data shown previously in figure 1. As in figure 1, the data are 
plotted as a function of q5/qjrn, with q5 and q5rn as defined previously. We note that the 
simulation methods used by Brady & Bossis (1985) and Chang & Powell (1993) differ 
slightly from the method outlined in 52, the main differences being the neglect of 
hydrodynamic interactions between particles and their images, and the use by Brady 
& Bossis (1985) of a different method for forming the resistance matrices. Computing 
time-averaged viscosities from our simulations was somewhat problematic since, as 
noted above, ( T ~ ) ~ ~ ,  and therefore ( T ) ~ ~ ,  do not become time-independent to the degree 
expected, particularly at high densities. Therefore, we simply set T, (the lower bound 
of the temporal interval used for averaging) high enough so that strong systematic 
variations in 7 occurring at short times were excluded from computed averages. 
However, weaker systematic variations in 7 occurring at larger times could not always 
be excluded from computed averages since these systematic variations do not always 
dissipate prior to the end of the simulation. As a result, computed values of ?j are 
somewhat dependent on T,, although not to a great degree. In addition, for q5u = 0.60 
the upper bound of the averaging interval was set at 70 time units so as to exclude the 
unrealistically large values of 7 that occurred in some simulations. 

d 0.50 (q5 /q5m 6 0.64), viscosities from our From figure 8, it is clear that for 
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FIGURE 9. Temporal variation of running averages of hydrodynamic, interparticle force, and total 
viscosities, (?,Jra, and (T),,. 9, = 0.50, Y* = 1, N = 25. ~ , 7 = 1.25 x lo6; ---, 
7 = 1.25 x lo5; ---, T = 1.25 x lo4; .... no repulsion. (a) (?h),a, (b)  <Tp),,, (4 (?),a. 



Dynamic simulation of suspensions of non-Brownian hard spheres 69 

simulations compare well to the simulated viscosities of Brady & Bossis (1985) and 
Chang & Powell (1993) and to the experimental data of Lewis & Nielsen (1968), Sengen 
& Probstein (1989), and Thomas (1965). However, at $u = 0.60 ($,/$m z 0.76), our 
computed viscosity, obtained from the At = 2.5 x simulation discussed above, is 
approximately 40% less than that computed by Chang & Powell (1993) and falls 
between the two sets of experimental data. For this density, time-averaged viscosities 
obtained from the simulations discussed in regard to figure 7 ranged from 15 to 21. For 
the largest of these values, the viscosity of Chang & Powell (1993) is within our 95% 
confidence interval. As noted previously, overlaps occurred for the entire range of (9, 
considered. For q5u = 0.60, up to 40 overlaps per configuration were observed. 

4.2. Simulation of repulsive particles: Fp =+ 0 
In this subsection we present results of simulations for which the suspended particles 
are repulsive (Fp =+ 0), with the repulsion described by equation (9). The parameters 7 

and y*, which control the magnitude and range of Fp,  were selected so that the range 
would be small compared to a particle radius (i.e. 7 + 1) and so that the magnitude 
would be sufficiently large to prevent overlap. For most of the results shown, y* = 1 
and 7 = 1.25 x lo6. 

Allowing the particles to be repulsive has the effect of setting a minimum particle 
separation in the suspension, thereby eliminating problems associated with extremely 
small particle separations, such as particle overlap. For 7 = 1.25 x lo6 and y* = 1, the 
minimum separation was @lop5) for all areal fractions. For the O(100 pm) particles 
used in the experiments of Lewis & Nielsen (1968) and Sengen & Probstein (1989), a 
dimensionless separation of O( lop5) corresponds to a dimensional separation of O(A). 
Although considerably larger than the minimum separations encountered when 
F, = 0, non-continuum and non-hydrodynamic forces may still be important at these 
small length scales. In addition, given that deviations from sphericity and surface 
roughness may be larger than in dimensionless terms, particles this close may be 
considered to be in contact, with Fp representing forces associated with contact. 

A criticism of the use of a repulsive force to prevent extremely small particle 
separations and overlaps is that it destroys the fore-aft symmetry of particle 
trajectories that exists in the absence of non-hydrodynamic forces. However, the results 
presented in $4.1, as well as the results of Bossis & Brady (1984), suggest that non- 
hydrodynamic forces are never truly absent in a real suspension owing to the presence 
of particles near contact. Therefore, fore-aft symmetry is unlikely to exist in a real 
system, and need not be replicated in a realistic simulation. We also note that, given 
the short range of Fp,  if the particles are well dispersed they will not be influenced by 
the repulsion and symmetry will be preserved. 

For all $u of interest, simulations were performed for a range of y* and 7 to ensure 
that our results did not vary significantly with variations in these parameters. For 
# a  = 0.30 and 0.50, simulations were performed for y* = 1 with 7 = 1.25 x lo4, 
1.25 x lo5, and 1.25 x lo6, and for 7 = 1.25 x lo6 with y* = 0.1, 1, and 10. For all other 
areal fractions, simulations were performed for y* = 1 with 7 = 1.25 x lo5 and 
1.25 x lo6, and for 7 = 1.25 x lo6 with y* = 1 and 10. As will be shown for $u = 0.50, 
computed viscosities did not vary significantly with either parameter. For all $,, 7 
varied by less than 1 % when y* was varied and 7 was held fixed. For variations of 7 

with y* held fixed, variations in 7 ranged from under 1 '/o at $u = 0.20 to about 10% 
at $, = 0.60. 

Tests were also conducted to ensure that results did not change significantly when 
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FIGURE 10. Temporal variation of running averages of hydrodynamic, interparticle force, and total 
viscosities, (+Qra, (?jp)rar and (q),,. 
y* = 1. , _-- , y* = 0.1; '.., no repulsion. (4 (7Jra, (b )  (Qra3 (c> (?La. = 0.50, 7 = 1.25 x lo6, N = 25. __ , y* = 10; ---, 
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different F p  were employed. For 4, = 0.30, simulations were performed with Fp given 
by 

where rSep  is defined in $ 3 ,  cr = l O P ,  and n = 10. The values cr and n were chosen so 
that equation (10) would have a range similar to equation (9) when 7 = 1.25 x lo6 and 
y* = 1. For the given values of CT, n, 7, and y*,  ?j obtained from simulations employing 
equation (10) differed by less than 1 YO from q obtained from simulations employing 
equation (9). 

In addition, tests were conducted to ensure that results did not vary significantly with 
N or with changes in initial conditions. For = 0 . 5 0 , ~  varied by less than 2 % when 
N was increased from 25 to 36, and varied by less than 1 YO when a different randomly 
generated initial configuration was employed. 

We also note that q p  =k 0, and therefore 7, 4= 0, when Fp += 0. However, for the 
values of 7 and y* used in these calculations, 7 = 1.25 x lo6 and y* = 1, vp/r was quite 
small and ranged from O(lO-') for q5, = 0.20 to O(IO-*) for 

For $, = 0.50, the sensitivity of computed viscosities to changes in 7 and y* is 
illustrated in figures 9 and 10. Running averages of qh, qp ,  and 7 are shown in figure 
9 for y* = 1 and various values of 7. For comparison, (qJTa and ($,, for F, = 0 and 
#, = 0.50 are also shown. For ail values of 7, running averages (7JTa (figure 9a)  vary 
little beyond r z 50, indicating the suspension has equilibrated. In addition, the 
variation of (vpJT, with 7 is relatively small considering the large variations of 7. At 
t = 500, (Qra varies by about 12 O/O when 7 changes by two orders of magnitude. In 
contrast, for Fp = 0 ( T ~ ) ~ ,  shows a steady upward trend for all t < 500, indicating that 
the suspension has not equilibrated. In addition, in the absence of repulsion (q,JrU is 
significantly larger than for F p  =k 0, except at very small times. At t = 500, (7Jra for 
Fp = 0 is about 55 % larger than the largest value of (?Jra for which F, =l 0. As noted 
in $4.1, particle overlaps were numerous at 

Running averages of 7 j p  corresponding to the ( 7 j J r a  shown in figure 9(a)  are shown 
in figure 9(6). As noted above, q p  is non-zero when Fp =I= 0. However, qp/r is quite 
small and ranged from about 2 x to about 2 x for the given values of 7. For 
all three values of 7, ( 7 j p ) , ,  equilibrates at t z 50. We note that the asymptotic value of 
(7Jra varies directly with 7 while the asymptotic value of varies inversely with 7. 
This dependence is expected since F, becomes steeper and more short ranged with 
increases in 7. 

Running averages of q are shown in figure 9(c). The variation of (?& with 7 is seen 
to be quite small, with at t = 500 varying by less than 10% over the given range 
of 7. This is a remarkably small change in viscosity given the large change in 7 and 
indicates that computed viscosities are relatively insensitive to the range of Fp. In 
contrast, these viscosities are significantly lower than the viscosity computed with 
F, = 0. In this figure, at t = 500 for which F, = 0, and for which overlaps are 
quite numerous, is seen to be about 40 YO larger than the largest value of (f&u for which 
F p  0. This indicates that the impact of overlaps on computed viscosities is quite 
severe and cannot be ignored at moderate to high densities. 

In figure 10, the sensitivity of computed viscosities to changes in y* is illustrated. In 
this figure, (qJrG, ( T ~ ) ~ , ,  and are shown for 7 = 1.25 x lo6 and y* = 0.1, 1, and 10. 
The variation of viscosity with y* is seen to be quite small, with (figure 1Oc) at 
t = 500 varying by about 1 YO over the given range of y* .  In agreement with our 

= 0.60. 

= 0.50 when F p  = 0. 
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FIGURE 11. Comparisons of relative viscosities 77 obtained from Stokesian Dynamics simulations with 
F, + 0 (0) to analogous data for which F, = 0 ( x )  from figure 8. Viscosity data from figure 1 are 
shown for reference. For F, 4 0 data, N = 25, 7 = 1.25 x lo6, y* = 1. 

comments at the beginning of this subsection, these results indicate that computed 
viscosities are relatively insensitive to changes in y* and 7. 

Time-averaged viscosities 7 for 0.20 d $a d 0.60 are shown in figure 11 where they 
are compared to viscosities obtained from simulations for which Fp = 0. Simulated 
viscosities of Brady & Bossis (1985) and Chang & Powell (1993), as well as the 
experimental measurements of Sengen & Probstein (1989), Lewis & Nielsen (1968), and 
Thomas (1965) are also shown. For the Fp + 0 results, 7 = 1.25 x lo6 and y* = 1 for 
all $a.  For $a d 0.40 (q5 /$m < 0.51), viscosities for which Fp =# 0 are in reasonable 
agreement with those for which Fp = 0. Agreement with the viscosities of Brady & 
Bossis (1985) and Chang & Powell (1993) is also reasonably good for $a d 0.40. 
However, for $a = 0.50 and 0.60, viscosities obtained from simulations of repulsive, 
non-overlapping particles are significantly smaller than for Fp = 0, and are also 
significantly smaller than the viscosities of Brady & Bossis (1985) and Chang & Powell 
(1993). For $a = 0.60 ($/c$~ = 0.76), the viscosity for which Fp $: 0 is 53 YO smaller 
than for Fp = 0 and is 70% smaller than the computed value of Chang & Powell 
(1993). This suggests that the details of particle interactions when separation distances 
are small are extremely important at high densities, and significantly impact suspension 
mechanics and bulk rheological properties. 

The viscosities computed with Fp =t= 0 are seen to compare favourably with the 
experimental data of Sengen & Probstein (1989), but relatively unfavourably with 
Lewis & Nielsen (1 968). The opposite appears to be true for the data of Brady & Bossis 
(1985) and Chang & Powell (1993). Viscosities from our simulations with Fq = 0 fall 
between the two sets of experimental data. In addition, all four sets of simulated 
viscosities, and both sets of experimental data, fall within the bounds suggested by the 
Thomas (1965) data. 

However, the presence of extremely small particle separations when Fp = 0, which 
calls into question the use of a continuum hydrodynamic model, and the large numbers 
of overlapping particles that arise from these small separations, are cause for concern 
and suggest that physics important at small particle separation distances is missing 
from the pure hydrodynamic model. Therefore, we believe that the pure hydrodynamic 
model is inadequate for simulating dense suspensions. 
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FIGURE 12. Instantaneous particle configurations for $a = 0.60. (a) F, = 0, At = 2.5 x t = 58.50; 
(b) F, given by equation (9) with T = 1.25 x lo6 and y* = 1.0, t = 189.10; ( c )  from Chang & Powell 
(1994). For clarity, and consistency with the data of Chang & Powell (1994), the computational 
domain has been replicated nine times. N = 25. 
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Additional evidence of the importance of including short-range non-hydrodynamic 
forces in simulations of non-Brownian hard spheres can be found by examining the 
suspension microstructure. For @a = 0.60, instantaneous particle configurations are 
shown in figure 12. Figure 12(a) shows a configuration for which Fp = 0 while figure 
12(b) shows Fp =I= 0 with T = 1.25 x lo6 and y* = 1. For clarity the computational 
domain in each figure has been replicated nine times. For this same density, an 
instantaneous configuration from a simulation presented in Chang & Powell (1994) is 
also shown (figure 12c). For the simulation with Fp = 0, as well as the simulation of 
Chang & Powell (1994), all of the particles in the computational domain have 
aggregated into one large dense cluster that spans the domain in the x-direction. As 
a result, the particles appear to form layers when multiple computational domains are 
viewed. In addition, the configuration shown in figure 12(a) contains 23 overlaps (not 
including particle images), which is almost one overlap per particle. In contrast, in 
figure 12 (b), particles form clusters that tend to be more linear and tend to align along 
the compressive axis of the bulk flow. In examining numerous particle configurations 
from simulations in which Fp + 0, configurations of the type seen in figure 12(a) were 
never observed. 

From examination of the instantaneous configurations shown in figure 12, it is clear 
that interparticle forces, even those with a very short range, have a significant influence 
on computed microstructures. However, it is desirable to have a more quantitative 
measure of microstructural differences than can be obtained graphically. A useful 
quantity in this regard is ti, the configuration-averaged number of particles that 
neighbour or abut each particle in the suspension. Here, we consider two particles to 
be neighbours if their centre-to-centre separation is less than some specified distance r,. 
For the simulations used to generate the configurations shown in figures 12(a) and 
12(b), tias a function of time is shown in figure 13. For Fp $: 0, nis shown for r,  = 2.01 
and 2.05. For both values of r,, n oscillates about a mean of approximately 2. A value 
of n near 2 is consistent with particle clusters that are linear or string-like, such as those 
seen in figure 12(b). For Fp = 0, A is shown for r,  = 2.01 and 2.00. For r ,  = 2.00, n 
includes only those particles that touch or overlap other particles in the suspension. 
For both values of re, n tends to increase with time and is near 4 at t z 200. Values of 
@ significantly greater than 2 are an indication that particle clusters are two- 
dimensional. An example of these more two-dimensional clusters is shown in the inset 
of figure 13, which contains the configuration at t = 193.80 from the F, = 0 
simulation. For this configuration, for which n = 4.56, all of the particles have 
aggregated to form a cluster which is, at least approximately, hexagonally close- 
packed. In view of the large values of A associated with these types of configurations, 
and the fact that ?i is always near 2 when Fp $: 0, it is clear that clusters of this type 
do not form when the particles are repulsive. 

Finally, we note that n depends on the choice of r,, with E an increasing function of 
r,  and identically zero when T ,  is less than the minimum particle separation distance in 
a configuration. However, for the values of r,  used to generate the data shown in figure 
13, significant qualitative variations of f i  with r,  are not observed. This suggests that 
differences between n for Fp =+ 0 and Fp = 0 are not numerical artifacts, but are 
indicative of real microstructural differences. 

5. Conclusions 
Stokesian Dynamics has been used to simulate monolayer suspensions of non- 

Brownian hard spheres. For the simulations presented in 54.1, particle interactions 
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n 
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t 

FIGURE 13. n as a function of time. 9, = 0.60, N = 25. ~ , F, =+ 0, r , =  2.01; 0, F, =I= 0, 
rc = 2.05; ---, F, = 0, rc = 2.01 ; +, F, = 0, r ,  = 2.00. Inset shows an instantaneous particle 
configuration at r = 193.80 for Fp = 0, with the computational domain replicated nine times. Data 
represented by symbols are plotted at five time unit intervals. 

were strictly hydrodynamic in nature (F, = 0). As a result, distances between particles 
became sufficiently small to invalidate the continuum hydrodynamic model used for 
the simulations. Because of the numerical constraints imposed by these small 
separations, particles tended to overlap. These overlaps became more common with 
increasing density and could not be eliminated by time-step reductions or by using 
different numerical methods. At the highest densities considered, the number of 
overlaps equalled or exceeded the number of particles used in the simulations. In 
addition, simulations of dense suspensions did not approach asymptotic states at long 
times, in contradiction to the behaviour of real suspensions. Instead, simulations 
terminated prematurely due to the presence of large amounts of overlap between 
adjacent particles. Therefore, despite the fact that simulations based on purely 
hydrodynamic models of particle interaction have been used to obtain viscosities in 
reasonable agreement with experimental data, these models lead to physically 
unrealistic microstructures when one simulates concentrated suspensions. 

For the simulations presented in $4.2, particles were subjected to both hydrodynamic 
and short-range repulsive forces (F, + 0). This repulsion, which in effect models 
phenomena important when particles are near contact, completely eliminated extremely 
small particle separations and associated problems such as overlaps. For all densities 
considered, the simulated suspensions rapidly approached long-time asymptotic states, 
with average bulk viscosities showing little variation with run length once the 
suspensions equilibrated. In addition, disordered microstructures are predicted and 
computed viscosities are in reasonable agreement with experimental data. 

The distinct differences between viscosities for which F, = 0 and F, + 0, which are 
quite large at high densities, suggest that the dynamics of particles near contact have 
an important impact on bulk rheological properties and cannot be ignored in realistic 
models of dense suspensions. Furthermore, our results suggest that critical physics 
important when particles are near contact is missing from models based solely on 
continuum hydrodynamics. 
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Although the focus of this work was non-Brownian suspensions of hard spheres, the 
issues raised here are likely to be critical whenever particles have a tendency to cluster. 
For example, in simulations of charge-stabilized suspensions at shear rates above the 
onset of shear thickening, where microstructures are disordered and contain large 
clusters of particles, Dratler, Schowalter & Hoffman (1996) were forced to employ the 
method outlined in $3 to avoid problems associated with small particle separation 
distances. One is also likely to see clustering, and therefore extremely small separations, 
in flocculated suspensions and electrorheological suspensions. 

Finally, although short-ranged repulsive forces can effectively prevent the problems 
associated with small particle separations, the computational cost is quite high at high 
densities. Therefore, more economical methods of dealing with these problems are 
needed. 

The authors wish to thank Professor J. F. Brady for the use of his Stokesian 
Dynamics simulation code and for important comments on an earlier version of this 
paper. Financial support for this work has been provided by the Monsanto Company 
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